If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+16x+23=0
a = -16; b = 16; c = +23;
Δ = b2-4ac
Δ = 162-4·(-16)·23
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-24\sqrt{3}}{2*-16}=\frac{-16-24\sqrt{3}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+24\sqrt{3}}{2*-16}=\frac{-16+24\sqrt{3}}{-32} $
| Y=6x+9000 | | m+2.67=3.67 | | 3x-34=x+22 | | 2y2+4y-70=0 | | 2^(4-3x)+2^(2-x)=2^(-8) | | x+2x+9x=5500 | | 5^2x+1-26.5^x+5=0 | | (3x-2)°=48° | | 2x^2+11x-25=0 | | X+14.25=4x+12 | | –15=3|f−3| | | 3a×4=16 | | 4y−9=−45 | | 4y−9=−45 | | 4(x+1)+3(x-1)=10 | | X/x+5=8 | | x/5-25=0 | | 40+1x=0 | | |4×+6x=9x| | | (D4-16)y=0 | | (D⁴-2D³-13D²+38D-24)y=0 | | 24x+6=42 | | |3x-2|=|x-4| | | 4×+6x=9x | | 7x^2+32x-92=0 | | 4+x=2x=164 | | -1=(3y+2)/3-(7y+7)/6 | | 4x;=7x | | -4x+7=-3x-4 | | 7.7x-4=6.7× | | 60-40x=300 | | 9=3x+34 |